Metropolisation, peripheries and funding of nano sciences & technologies production in Europe

STI 2017, 07/09/2017

Lionel Villard, François Perruchas, Thomas Scherngell, Michael Barber, Philippe Larédo and Jordi Molas-Gallart

Background and objectives

First works in nano S&T field demonstrated some interesting findings:

- a very fast rate of growth (14% yearly) fitting with Bonaccorsi s approach (Bonaccorsi, 2008).
- secondly, it highlighted a strong agglomeration effects where over 80% of world knowledge production is located in few places (Robinson, D. K. et al., 2007, Delemarle et al., 2009).

Does the European funding play a role ? Does it drive collaborations across urban areas in Europe ?

Unit of analysis as a proxy to link analytical dimensions: Functional Urban Areas

Traditional approaches are usually based on **administrative boundaries** (NUTS, municipalities) and make difficult to reflect the **geographical continuity** of socio-economic phenomena of S&T productions.

Functional Urban Areas (Brezzi, OECD, 2012):

- At a municipality scale
- With a core (density of population) and an hinterland (based mainly on a commuting data)

688 FUA in Europe (EU-28 and associated countries) and some other countries (Japan, USA, Canada...).

Estimation results I

		Ехр	loration (p	ublica	tions)	Exploitation (patents)						
	mean marg.effec	t sign.	mean marg.effec	t ^{sign.}	mean marg.effec	sign.	mean marg.effec	sign.	mean marg.effec	t sign	mean marg.effec	t ^{sign.}
EU funding	1.334	***	1.311	***	1.231	***	1.174	***	1.179	***	1.166	***
Population	2.265	***	2.459	***	1.903	***	2.593	***	2.658	***	2.435	***
GDP per capita	1.080		1.167		0.964		2.902	***	1.597		-0.606	
R&D expenditures	-		1.029		1.188		-		1.843	***	1.874	***
PhD students	-		-		1.124	***	-		-		0.932	
Constant	-5.316	**	-4.723	***	-3.897	***	-13.781	***	-12.423	***	-11.374	***
Overdispersion	2.915	***	1.515	***	1.011	***	1.630	***	1.585	***	1.415	***
LR (NegBin)	420.56	***	508.97	***	387.26	***	492.50	***	390.69	***	498.25	***

Based on Negative Binomial Regression; Mean marginal effects indicate elasticities (percent changes) of the dependent variable to changes in the independent variables, holding all other variables at their mean; *** significant at the 0.01 level, ** significant at the 0.05 level, * significant at the 0.1 level;

Findings from the 1st model

- **Positive and statistically significant EU funding effects** on both knowledge **exploration** and **exploitation**
- Effects are slightly, but statistically significant **higher for exploration in all model versions**.
- The full model (controlling for R&D expenditures and Phd students) predicts for a 1% increase of EU funding a 1.23% increase in publications, while a 1.16% increase in patenting
- Results stay robust when **controlling for R&D expenditures**; these turn out to be not significant for exploration, but significant and highly influential for exploitation (for exploitation, GDP per capita becomes insignificant when adding R&D expenditures, pointing to a high correlation between the two variables)
- **PhD students** are a significant and important driver for exploration, but insignificant for exploitation

Estimation results II

	Exp	<mark>on</mark> (Top 10	blications)	Exploitation (Top 10% patents)								
	mean marg.effec	sign.	mean marg.effec	t sign.	mean marg.effec	sign.	mean marg.effec	sign.	mean marg.effec	sign.	mean marg.effec	sign.
EU funding	1.401	***	1.370	***	1.301	***	1.167	***	1.093	*	1.125	***
Population	2.097	***	2.320	***	1.789	***	2.381	***	2.715	***	2.846	***
GDP per capita	2.755	***	1.678		1.699		3.761	***	0.772		0.443	
R&D expenditures	-		1.417		1.408	***	-		2.188	***	3.046	***
PhD students	-		-		1.134	***	-		-		1.035	
Constant	-9.963	**	-11.452	***	-8.432	***	-15.835	***	-16.488	***	-17.181	***
Overdispersion	1.971	***	1.910	***	1.181	***	3.542	***	4.958	***	3.891	***
LR (NegBin)	529.87	***	435.49	***	373.71	***	208.35	***	125.24	***	115.92	***

Based on Negative Binomial Regression; Mean marginal effects indicate elasticities (percent changes) of the dependent variable to changes in the independent variables, holding all other variables at their mean; *** significant at the 0.01 level, ** significant at the 0.05 level, * significant at the 0.1 level;

Main findings in terms of quality

- **EU funding effects** increase when looking at quality for knowledge exploration, but slightly decrease for exploitation
- **R&D expenditures** become a highly significant determinant for knowledge exploration when looking at quality, and also increases its importance markedly for exploitation
- **Phd students** are still important at the same level for exploration in terms of quality
- The remaining patterns of estimates stay the same between the 'quantity' and the 'quality' models

Cores and peripheries analysis

Three different networks :

- EU Funding (link: same European project)
- Knowledge Exploration (link: same scientific publication)
- Knowledge Exploitation (link: same priority patent)

Traditional approaches : **coreness as a continuous phenomenon** trough space (Borgatti and Everett 1999, and after).

Fig. 1. Examples of meso-scale network structures: (A) community; (B) core-periphery; (C) multicore-periphery.

Challenge: real-world networks, may have multiple cores (Yan and Luo 2015).

Cores and peripheries analysis

Two steps to identify core and peripheral FUAs:

- 1. Community detection (Louvain algorithm Blondel et al. 2008)
- Inside each community, with a *Nodal flow* approach (Beauguitte, Giraud, & Guerois, 2016; Nystuen & Dacey, 1961) we identified :
 - Peripheral FUAs nodes dominated in all their relations
 - Intermediary FUAs nodes dominating peripheral nodes <u>but</u> <u>dominated by other cores</u>.
 - Core FUAs nodes dominating all the nodes of their community

Main findings from the network of participations

• Collaborations through time do not build community.

- Strong interdependency of main hubs: FUA linked at the European level (Paris, Munich, Roma, and London) which are also driving strong participations with other FUA.
- Paris is dominating these hubs in term of participations (and funding).
- Dense second league of FUA in term of funding in the central part of Europe.

Main findings from the collaboration network of authors (exploration)

- More geographically distributed.
- A strong community pattern, with 16 subnetworks (and 21 cores):
 - Nationally structured with the capital city as a core (FR, DE, IT, BE)
 - Language structure for English (UK with AU, CAN, US) and Spanish (ES with Mex, Chile, Colombia)
 - Some others more transnational in Europe (Austria with Finland, Hungary ... Poland with Czech, Republic...)
- A set of **cores interlinked FUA** (Paris, Berlin, Munich, Roma ...), mainly capital city. They are also driving strong international extra-European relations. There are irrigating intra-national sub-networks intermediary (Grenoble) and with peripheral FUA.
- Intra-national networks in the Southern (Madrid and Roma), Eastern (Greece, Warszawa and Vienna) and the Northern (Stockholm and Helsinki) parts of Europe: articulated around FUA (mainly core) with the capital city linked with regional intermediary and peripheral FUA.

Main findings from the collaboration network of inventors (exploitation)

- Also 16 communities (and 22 cores):
 - Two strong nationally structured (France, with two in Germany, but Berlin is not a core);
 - But other communities are much more trans-European (i.e. three communities take place in Italia, where two of them are densely link with others countries).
- A strong "belt" in the central part of Europe, with some core FUA (and sub-national networks), and strong international extra-European collaborations.
- Nearly empty spaces, with peripheral and intermediary FUA, in the southern and Eastern parts of Europe.
- Some European subnetworks are driven and linked by core FUA in US (San-Francisco, Chicago).

Conclusion

- EU Funding plays a role in exploration and exploitation
- EU Funding effect is higher on exploration, specifically on high quality exploration
- Funding, exploration and exploitation networks are different (communities, concentration)
- Other determinants to explain the FUA's performances in exploration / exploitation

Further developments

- Estimation of spatial spillovers between FUAs by means of a spatial econometric extension
- Using yearly data to specify a dynamic model accounting for time effects on the role of EU funding
- Using yearly data to analyse the evolution of the networks over time

Thank you

